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Abstract. We present a multispin coding algorithm for the 2D i J  spin glass model. It is 
a straightforward generalisation of Vichniac’s Q2R king  model. In contrast to that, 
however, it is not strictly deterministic and energy conserving, so that no problems with 
ergodicity arise. Numerical results are given for the ground state reached by simulated 
annealing. They are in good agreement with previous results. 

Spin glasses [ I ]  are a prime testing ground for optimisation methods in complex 
situations [2]. In particular, it is non-trivial to obtain the correct ground-state energy 
and entropy. Actually, it has been shown [3] that for 2~ spin glasses this requires only 
polynomial time, i.e. it is not an N P  problem. Nevertheless, the best available estimates 
seem to be from the transfer matrix method [4,5] (the effort for which increases 
exponentially with size) and from simulated annealing. In the latter, one starts with 
a finite temperature, approaches thermal equilibrium at this temperature by Monte 
Carlo simulation, and then decreases temperature in small steps. As it was suggested 
[2] that simulated annealing might be very efficient also in other complex optimisation 
problems, it seems useful to understand it as well as possible in spin glasses. 

The most precise results obtained up to the present in this way [6] have used the 
standard Metropolis algorithm. Recently, other methods for simulating spin systems 
have been developed which seem to be much more efficient when applied to the 
standard Ising model. These include the microcanonical models of Creutz [7,8] and, 
as their ultimate simplification, the Q2R model of Vichniac [9]. 

In the Q2R model, the lattice is divided into two sublattices in a checkerboard 
fashion, and spins are updated alternatively on the two sublattices. The updating is 
such that spins are flipped if and only if the flip does not change the energy. Thus 
the evolution is purely deterministic, requiring no random number generators. The 
advantage therein is that the updating can be made simultaneously on many spins, by 
using only one bit of a computer word per spin, making the algorithm extremely fast 
[ 10,111. More precisely, only eight logical operations were necessary in [lo] to update 
one computer word. The disadvantages are on the one hand that finite-size corrections 
seem larger due to the exact energy conservation. On the other hand, the model is 
not strictly ergodic. This does not seem to pose problems close to the critical point 
[ 111, but it should lead to severe problems at low temperatures. 

In the present letter, we show that a simple modification of the Q2R model, 
preserving the advantages but avoiding the disadvantages, can be applied to the * J  
spin glass at low temperature. This is defined by the energy 

H = J C &ikSiSk &ik = *1 J =  1. (1) 
( i l k )  
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On an infinitely large lattice, all horizontal bonds can be arranged by a gauge transfor- 
mation to be ferromagnetic. The signs of the vertical bonds remain still completely 
random, and each bond can be represented by one bit. Assume the computer has 
N-bit words and the lattice has a width L which is a multiple of 2N. Then, we need 
Ll N words for each row of spins and L/  N other words for the row of vertical bonds 
below. To take into account the random bonds, one needs just two additional Boolean 
operations per N spins for each update. (The gauge setting all horizontal bonds 
ferromagnetic could be avoided at the expense of one more word per N spins and 
two more Boolean operations.) 

In order to improve the ergodicity, we do not flip spins each time when this would 
conserve energy, but only with probability f. This might seem to destroy the main 
advantage that simulation is faster when no random number generators are needed. 
But since we need only a single bit per spin set randomly to 0 or 1 ,  this is also very 
fast. We need one random integer for each update of N spins and one more logical 
AND. The resulting increase of the updating time is less than 50%. 

Up to this stage, we need 11 logical operations plus one random integer to update 
N spins. 

The last modification was to break exact energy conservation, changing thus from 
the microcanonical to roughly the canonical ensemble. The drawbacks of the micro- 
canonical ensemble as described above are as follows. 

(a) Large finite-size corrections. This follows simply from the fact that a small 
system does not have the energy fluctuations it would have if it were part of a large 
system. In the canonical ensemble, a small system is in this way more similar to a part 
of an infinite one. 

(b) Slow relaxation due to trapping in local minima. Jumps between local minima 
should be enhanced if the energy can fluctuate locally in space. In the above micro- 
canonical model, the energy in any region of space can fluctuate only by being 
transferred through the boundary, which is slow compared to the fluctuations in a 
canonical model. 

Since we are interested in the ground state and use non-zero temperatures only in 
auxiliary steps during the ‘cooling down’, we indeed do not need the exact canonical 
ensemble. A fast algorithm whose equilibrium state is a good approximation to the 
canonical ensemble is the following. When a spin flip decreases the energy, we perform 
it. If it leaves the energy constant, we perform it with probability as described above. 
Finally, if the flip would increase the energy, we do the flipping with a probability p 
independent of the energy increase. This probability is essentially the Boltzmann 
factor, p = exp( -2Jp), for the smaller of the two increases. A fast way of performing 
these flips consists in storing an array of bit masks with bits set to ‘1’ randomly with 
probability p,  and making logical A N D  with these bit masks. In order to avoid any 
problems related to the finiteness of the array of bit masks, we scrambled them before 
each application. This needed two more random numbers and one SHIFT per updating 
of N spins. 

The final algorithm needed three random numbers and 24 logical operations for 
each updating of N spins. On a Cyber 1701175, one updating required 0.82 ps per 
spin. The final relaxation to ihe ground state at T = 0 was somewhat simpler and took 
only 0.44 ps. 

The cooling strategy was essentially the same as in [6], although different strategies 
have been discussed recently [12]. We started at temperature T = 1.2. In steps of 
AT=0.14, we went down to T=0.5. Below this temperature, thermal effects were 
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estimated to be negligible within our statistics, and thus we continued with T = 0. In 
one run, the number t of iterations at each of these seven temperatures was the same. 
Energies reached in this way depend evidently on the cooling rate A T / t .  Results for 
various rates are given in figure 1 and table 1. Each data point in figure 1 is obtained 
from a large number of independent runs on a lattice of 240 x 240 spins. The number 
of runs for each t is also given in table 1. Also plotted in figure 1 are the values of [ 6 ] .  

In [ 6 ]  it was claimed that the energies (per spin) reached in such a cooling procedure 
behave as 

E (  t )  = Eo+ constant x t-X (2) 

with x = 0.2-0.3 and with Eo 5= 1.398 being the ground-state energy. The latter agrees 
with the result E o =  1.40*0.01 of [12]. We found that both the data of [ 6 ]  and our 
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Figure 1. Energies of the ‘ground states’ reached after cooling with a rate 1/1. In view of 
the ansatz (3), these energies are plotted against l / ln  1. A, data of [6] (1OOx loo), 0, our 
results (240x240). In our data, the statistical errors are in general smaller than the size 
of the symbols. 

Table 1. The first column gives the inverse cooling rates f in updates per spin for each 
temperature (the temperatures were T =  1.2, 1.06, 0.92, 0.78, 0.64, 0.50, 0, the lattice size 
was 240 x 240). The second column gives the number of runs with this cooling rate and 
the third column gives the energy per spin reached. 

I Number of runs E 

5 
10 
20 
50 

100 
200 
500 

1 000 
2 000 
5 000 

10 000 

100 
50 
50 
20 
20 
30 
30 
40 
12 
4 

24 

1.335 75 * 0.000 24 
1.349 90*0.000 33 
1.359 48 * 0.000 29 
1.369 14*0.00032 
1.374 75 * 0.000 55 
1.378 06*0.00040 
1.382 54 * 0.000 43 
1.384 28 f 0.000 29 
1.385 55*0.00049 
1.387 28 * 0.000 79 
1.389 34 i 0.000 37 
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data are better described by (2) if a larger value x = 0.35 is taken, which would then 
give Eo = 1.393 f 0.003 for both data sets. 

Alternatively, it was proposed in [13] that E ( t )  converges as 

constant 
(In t ) l  

E ( t ) = E , +  (3) 

with some unknown exponent f: Indeed a fit at least as good as the above was obtained 
with 5 = 1 .  For this reason, E (  t )  is plotted against l / ln  t in figure 1 .  The extrapolation 
to t = O  now gives somewhat larger values: 

- 1.403 f 0.002 (this letter) 
- 1.401 f 0.004 (see [61). Eo= { (4) 

This is in perfect agreement with the value Eo = - 1.4024 * 0.0012 found in [5] by means 
of the transfer matrix method. 

Both in [6] and in the present work, no finite-size corrections have been taken into 
account. We feel that we are reasonably safe due to the large lattice size (the lattices 
in [6]  were only of size 100 x 100). One possible source of finite-size corrections specific 
to the present letter consists in our putting all horizontal bonds to -J.  On a finite 
lattice, there is at most one bond per line which cannot be gauged ferromagnetic. The 
error in the ground-state energy committed thereby can be estimated exactly as 
sIE01/2L=0.003. According to test runs on smaller lattices, it actually seems to be 
much smaller than that. 

Summarising, we have presented Monte Carlo results of a new algorithm for the 
ground state of the two-dimensional * J  spin glass. It is not only very fast (indeed it 
seems the fastest algorithm in the literature), but it also uses very little storage. While 
it would not be straightforward to extend it to spin glasses with continuous distributions 
of bonds, the extension to three dimensions is trivial. Our numerical results improve 
the best previous Monte Carlo results. Their extrapolation to infinitely slow cooling 
agrees perfectly with the most precise results of a transfer matrix calculation [5], 
provided we use in this extrapolation the cooling rate dependence predicted in [13]. 
If we would use instead the power law conjectured in [6], our extrapolated value 
would disagree with that of [ 5 ]  by around three standard deviations. Thus we conclude 
that both [ 5 ]  and [13] are correct, and that a power law as proposed in [6] is ruled out. 

One of us (PG) wants to thank very much Dr P Rujan for a most interesting discussion, 
and for pointing out [3, 131. 
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